span.fullpost {display:none;} span.fullpost {display:inline;} saber si ocupa lugar: Levitación magnética

lunes, 28 de junio de 2010

Levitación magnética


En la ciencia ficción los campos de fuerza se utilizan a menudo como plataformas para desafiar la gravedad. En la película “Regreso al futuro” (1985), Michael J.Fox monta una “tabla flotante” que se parece a un monopatín excepto en que flota sobre la calle. Tal dispositivo antigravedad es imposible según las leyes de la física tal como hoy las conocemos. Pero tablas flotantes y coches flotantes ampliados magnéticamente podrían hacerse realidad en el futuro y darnos la capacidad de hacer levitar grandes objetos a voluntad. En el futuro, si los “superconductores a temperatura ambiente” se hacen una realidad, podríamos ser capaces de hacer levitar objetos utilizando el poder de campos de fuerzas magnéticos.

Si colocamos dos imanes próximos uno a otro con sus polos norte enfrentados, los dos imanes se repelen. (Si damos la vuelta a su imán de modo que el polo norte de uno esté frente al polo norte del otro, entonces los dos imanes se atraen). Este mismo principio, que los polos norte se repelen, puede utilizarse para levantar pesos enormes del suelo. Varios países ya construyen trenes avanzados de levitación magnética (trenes maglev) que se ciernen sobre las vías utilizando imanes ordinarios. Puesto que la fricción es nula, pueden alcanzar velocidades récord, flotando sobre un cojín de aire.

En 1984 empezó a operar en el Reino Unido el primer sistema maglev comercial del mundo, que cubre el trayecto entre el aeropuerto internacional de Birmingham y la cercana estación de ferrocarril internacional. También se han construido trenes maglev en Alemania, Japón y Corea, aunque la mayoría de ellos no están diseñados para alcanzar grandes velocidades. El primer tren maglev comercial que funciona a alta velocidad es el de la línea de demostración del segmento operacional inicial (IOS) de Shanghai, que viaja a una velocidad máxima de 430 km/h. El tren maglev japonés en la prefectura de Yamanashi alcanzó una velocidad de 580 km/h, más rápido incluso que los trenes de ruedas convencionales.

Pero estos dispositivos maglev son muy caros. Una manera de aumentar su eficacia sería utilizar superconductores, que pierden toda la resistencia eléctrica cuando son enfriados hasta cerca del cero absoluto. La superconductividad fue descubierta en 1911 por Heike Kamerlingh Onnes. Cuando ciertas sustancias se enfrían por debajo de 20 º Kelvin sobre el cero absoluto (0 ºK o -273 º C), pierden toda su resistencia eléctrica. Normalmente, cuando bajamos la temperatura de un metal, su resistencia disminuye (esto se debe a que las vibraciones aleatorias de los átomos dificultan el flujo de electrones en un cable. Al reducir la temperatura se reducen estos movimientos aleatorios, y la electricidad fluye con menos resistencia). Pero para gran sorpresa de Kamerlingh Onnes, encontró que la resistencia de ciertos materiales cae abruptamente a cero a una temperatura crítica.

Los físicos reconocen inmediatamente la importancia de este resultado. Las líneas de transporte de electricidad sufren pérdidas importantes cuando transportan la electricidad a grandes distancias. Pero si pudiera eliminarse toda la resistencia, la potencia eléctrica podría transmitirse casi gratis. De hecho, si se hiciera circular la electricidad por una bobina superconductora, la electricidad circularía durante millones de años sin ninguna reducción en la energía. Además, con estas enormes corrientes eléctricas sería fácil hacer electroimanes de increíble potencia. Con ellos podrían levantarse pesos enormes con facilidad.

Pese a todos estos poderes milagrosos, hay un serio problema con la superconductividad: resulta que es muy caro mantener sumergidos grandes electroimanes en tanques de líquido superenfriado. Se requieren enormes plantas de refrigeración para mantener los líquidos a bajísimas temperaturas, lo que hace prohibitivamente caros los imanes superconductores.

Pero quizá un día, los científicos sean capaces de crear un “superconductor a temperatura ambiente”, el Santo Grial de los físicos del estado sólido. La invención de superconductores a temperatura ambiente en el laboratorio desencadenaría una segunda revolución industrial. Sería tan barato conseguir potentes campos magnéticos capaces de elevar coches y trenes que los coches flotantes se harían económicamente viables. Con superconductores a alta temperatura podrían hacerse realidad los fantásticos coches volantes que se ven en “Regreso al Futuro”, “Minority Report” o “La guerra de las galaxias”.

En teoría, se podría llevar un cinturón hecho de imanes superconductores que permitiría levitar sin esfuerzo. Con tal cinturón, uno podría volar en el aire como Superman. Los superconductores a temperatura ambiente son tan notables que aparecen en muchas novelas de ciencia ficción (tales como la serie Mundo Anillo, comenzada en 1970 por Larry Niven).

Durante décadas, los físicos han buscado superconductores a temperatura ambiente sin éxito. Ha sido un proceso tedioso de ensayo y error, probando un material tras otro. Pero en 1986 se descubrió una nueva clase de sustancias llamadas “superconductores a alta temperatura” que se hacen superconductoras a unos 90 grados sobre cero absoluto o 90 K, lo que causó sensación en el mundo de la física. Parecía que se abrían las compuertas. Mes tras mes, los físicos competían por conseguir el próximo récord mundial para un superconductor. Durante un tiempo pareció que la posibilidad de superconductores a temperatura ambiente saltaba de las páginas de las novelas de ciencia ficción a nuestras salas de estar. Pero tras algunos años de movimiento a velocidad de vértigo, la investigación en superconductores a alta temperatura comenzó a frenarse.

Actualmente, el récord mundial para un superconductor a alta temperatura lo tiene una sustancia llamada óxido de cobre y mercurio, talio, bario y calcio, que se hace superconductor a 138 K (-135ºC). Esta temperatura relativamente alta está todavía muy lejos de la temperatura ambiente. Pero este récord de 138 K sigue siendo importante. El nitrógeno se licua a 77 K, y el nitrógeno líquido cuesta casi lo mismo que la leche ordinaria. De modo que podría utilizarse nitrógeno líquido para enfriar esos superconductores a alta temperatura a un coste muy bajo. (Por supuesto, los superconductores a temperatura ambiente no necesitarían ser enfriados).

Resulta bastante embarazoso que por el momento no exista ninguna teoría que explique las propiedades de estos superconductores a alta temperatura. De hecho, un premio Nobel aguarda al físico emprendedor que pueda explicar cómo funcionan los superconductores a alta temperatura. (Están formados por átomos dispuestos en diferentes capas. Muchos físicos teorizan que esta estratificación del material cerámico hace posible que los electrones fluyan libremente dentro de cada capa, creando un superconductor. Pero sigue siendo un misterio cómo sucede con exactitud).

Debido a esa falta de conocimiento, los físicos tienen que recurrir a procedimientos de ensayo y error para buscar nuevos superconductores a alta temperatura. Esto significa que los míticos superconductores a temperatura ambiente pueden ser descubiertos mañana, el año que viene o nunca. Nadie sabe cuándo se encontrará una sustancia semejante, si es que llega a encontrarse.

Pero si se descubren superconductores a temperatura ambiente, podría desencadenarse una marea de aplicaciones comerciales. Campos magnéticos un millón de veces más intensos que el campo magnético de la Tierra (que es de 0,5 gauss) podrían convertirse en un lugar común.

Una propiedad común de la superconductividad se denomina efecto Meissner. Si colocamos un imán sobre un superconductor, el imán levitará, como si estuviera mantenido por una fuerza invisible. (La razón del efecto Meissner es que el imán tiene el efecto de crear un imán “imagen especular” dentro del superconductor, de modo que el imán original y el imán “imagen” se repelen. Otra manera de verlo es que los campos magnéticos no pueden penetrar en un superconductor; por el contrario, los campos magnéticos son expulsados. Por ello, si se mantiene un imán sobre un superconductor, sus líneas de fuerza son expulsadas por este último, y así las líneas de fuerza empujan al imán hacia arriba, haciéndolo levitar).

Utilizando el efecto Meissner, podemos imaginar un futuro en que las carreteras estén construidas con estas cerámicas especiales. Entonces, imanes colocados en nuestros cinturones o los neumáticos de nuestros automóviles nos permitirían flotar mágicamente hasta nuestro destino, sin ninguna fricción ni pérdida de energía.

El efecto Meissner actúa solo en materiales magnéticos, tales como metales. Pero también es posible utilizar imanes superconductores para hacer levitar materiales no magnéticos, llamados paramagnéticos y diamagnéticos. Estas sustancias no tienen propiedades magnéticas por sí mismas: solo adquieren sus propiedades magnéticas en presencia de un campo magnético externo. Las sustancias paramagnéticas son atraídas por un imán externo, mientras que las diamagnéticas son repelidas por un imán externo.

El agua, por ejemplo, es diamagnética. Puesto que todos los seres vivos están hechos de agua, pueden levitar en presencia de un potente campo magnético. En un campo magnético de unos 15 teslas (30.000 veces el campo de la Tierra), los científicos han hecho levitar animales pequeños, como ranas. Pero si los superconductores a temperatura ambiente se hicieran una realidad, sería posible hacer levitar también grandes objetos no magnéticos gracias a su carácter diamagnético. Los científicos estiman que estas fantasías propias de la ciencia ficción podrían convertirse en realidad dentro de un siglo.

1 comentario:

Anónimo dijo...

excelente articulo, puede aclarar muchas dudas sobre el magnetismo y las aplicaciones que se podrian tener.