sábado, 12 de octubre de 2013
El Teletransporte (1)
El teletransporte, o la capacidad de transportar instantáneamente a una persona o un objeto de un lugar a otro, es una tecnología que podría cambiar el curso de la civilización y alterar el destino de las naciones. Podría alterar de manera irrevocable las reglas de la guerra: los ejércitos podrían teletransportar tropas trás las líneas enemigas o simplemente teletransportar a los líderes del enemigo y capturarlos. El sistema de transporte actual —desde los automóviles y los barcos a los aviones y los trenes, y todas las diversas industrias que sirven a estos sistemas— se haría obsoleto; sencillamente podríamos teletransportarnos al trabajo y teletransportar nuestros productos al mercado. Las vacaciones no requerirían ningún esfuerzo, pues nos teletransportaríamos a nuestro destino. El teletransporte lo cambiaría todo.
La versión más antigua del teletransporte puede encontrarse en textos religiosos tales como la Biblia, donde algunas personas desaparecen como por encanto. Este pasaje de los Hechos de los Apóstoles en el Nuevo Testamento parece sugerir el teletransporte de Felipe de Gaza a Azoto: «Y en saliendo del agua, el Espíritu del Señor arrebató a Felipe, y el eunuco no volvió a verle, pero siguió gozoso su camino. Felipe, sin embargo, apareció en Azoto y viajó por todas las ciudades predicando la buena nueva hasta que llegó a Cesárea» (Hechos 8.36-40).
El teletransporte forma parte también del arsenal de trucos e ilusiones de cualquier mago: sacar conejos de una chistera, cartas de la manga y monedas de detrás de las orejas de alguien. Uno de los trucos de magia más ambiciosos de los tiempos recientes presentaba a un elefante que desaparecía ante los ojos de unos espectadores estupefactos. En este espectáculo, un enorme elefante de varias toneladas de peso era colocado dentro de una caja. Luego, con un toque de la varita del mago, el elefante desaparecía para gran asombro de los espectadores. (Por supuesto, el elefante no desaparecía realmente. El truco se realizaba con espejos. Detrás de cada barrote de la jaula se habían colocado largas y delgadas tiras verticales de material reflectante. Cada una de estas tiras verticales reflectantes podía pivotar, como una puerta. Al comienzo del truco de magia, cuando todas estas tiras reflectantes verticales estaban alineadas detrás de las barras, los espejos no podían verse y el elefante era visible. Pero cuando los espejos se rotaban 45 grados ante la audiencia, el elefante desaparecía, y los espectadores se quedaban mirando la imagen reflejada del lateral de la jaula).
Según la teoría newtoniana, el teletransporte es claramente imposible. Las leyes de Newton se basan en la idea de que la materia está hecha de minúsculas y duras bolas de billar. Los objetos no se mueven hasta que se les empuja; los objetos no desaparecen de repente y reaparecen en otro lugar. Pero en la teoría cuántica, eso es precisamente lo que las partículas pueden hacer. Las leyes de Newton, que imperaron durante doscientos cincuenta años, fueron abolidas en 1925, cuando Werner Heisenberg, Erwin Schródinger y sus colegas desarrollaron la teoría cuántica. Al analizar las extrañas propiedades de los átomos, los físicos descubrieron que los electrones actuaban como ondas y hacían saltos cuánticos en sus movimientos aparentemente caóticos dentro de los átomos.
El hombre más íntimamente relacionado con estas ondas cuánticas es el físico vienés Erwin Schródinger, que estableció la famosa ecuación de ondas que lleva su nombre, una de las más importantes de toda la física y la química. En las facultades universitarias se dedican cursos completos a resolver su famosa ecuación, y paredes enteras de bibliotecas de física están llenas de libros que examinan sus profundas consecuencias. En teoría, la totalidad de la química puede reducirse a soluciones de esta ecuación.
En 1905 Einstein había mostrado que las ondas luminosas pueden tener propiedades de tipo partícula; es decir, pueden describirse como paquetes de energía llamados fotones. Pero en los años veinte se estaba haciendo evidente para Schródinger que lo contrario también era cierto: que partículas como electrones podían exhibir un comportamiento ondulatorio. Esta idea fue señalada por primera vez por el físico francés Louis de Broglie, que ganó el premio Nobel por esa conjetura. (Se demuestra esto en las facultades de física disparando electrones dentro de un tubo de rayos catódicos como los que se suelen encontrar en los televisores. Los electrones pasan por un minúsculo agujero, de modo que normalmente uno esperaría ver un punto minúsculo donde los electrones incidieran en la pantalla del televisor. En lugar de ello se encuentran anillos concéntricos de tipo onda, que es lo que se esperaría si una onda, y no una partícula puntual, hubiera atravesado el agujero).
Un día Schródinger dio una conferencia sobre este curioso fenómeno. Fue retado por un colega físico, Peter Debye, que le preguntó: si los electrones se describen mediante ondas, ¿cuál es su ecuación de ondas? Desde que Newton creó el cálculo infinitesimal, los físicos habían sido capaces de describir las ondas en términos de ecuaciones diferenciales, de modo que Schródinger tomó la pregunta de Debye como un reto para escribir la ecuación diferencial para las ondas electrónicas. Ese mes Schródinger se fue de vacaciones, y cuando volvió tenía dicha ecuación.
Así, de la misma manera que antes que él Maxwell había tomado los campos de fuerza de Faraday y extraído las ecuaciones de Maxwell para la luz, Schródinger tomó las ondas de materia de De Broglie y extrajo la ecuación de Schródinger para los electrones. (Los historiadores de la ciencia han dedicado muchos esfuerzos a tratar de averiguar qué estaba haciendo exactamente Schródinger cuando descubrió su famosa ecuación que había de cambiar para siempre el paisaje de la física y la química modernas. Al parecer, Schródinger creía en el amor libre y a menudo estaba acompañado en sus vacaciones por sus amantes y su mujer. Incluso mantenía un diario detallado donde apuntaba sus numerosas amantes, con códigos elaborados concernientes a cada encuentro. Los historiadores creen ahora que estaba en la villa Herwig, en los Alpes, con una de sus novias el fin de semana en que descubrió su ecuación).
Cuando Schródinger empezó a resolver su ecuación para el átomo de hidrógeno encontró, para su gran sorpresa, los niveles de energía exactos del hidrógeno que habían sido cuidadosamente catalogados por físicos anteriores. Entonces se dio cuenta de que la vieja imagen del átomo de Niels Bohr que mostraba a los electrones zumbando alrededor del núcleo (que incluso se usa hoy en libros y en anuncios cuando se trata de simbolizar la ciencia moderna) era en realidad equivocada. Estas órbitas tendrían que ser reemplazadas por ondas que rodean el núcleo. El trabajo de Schródinger también envió ondas de choque a través de la comunidad de físicos. De repente los físicos eran capaces de mirar dentro del propio átomo, examinar en detalle las ondas que constituían sus capas electrónicas y extraer predicciones precisas para esos niveles de energía que encajaban perfectamente con los datos.
Pero quedaba una cuestión persistente que no ha dejado hasta hoy de obsesionar a los físicos. Si el electrón está descrito por una onda, entonces, ¿qué está ondulando? Esta pregunta fue respondida por el físico Max Born, que dijo que esas ondas son en realidad ondas de probabilidad. Estas ondas dan solamente la probabilidad de encontrar un electrón concreto en cualquier lugar y cualquier instante. En otras palabras, el electrón es una partícula, pero la probabilidad de encontrar dicha partícula viene dada por la onda de Schródinger. Cuanto mayor es la onda en un punto, mayor es la probabilidad de encontrar la partícula en dicho punto.
Con estos desarrollos, azar y probabilidad se introducían repentinamente en el corazón de la física, que hasta entonces nos había dado predicciones precisas y trayectorias detalladas de partículas, desde planetas a cometas o a balas de cañón. Esta incertidumbre fue finalmente codificada por Heisenberg cuando propuso el principio de incertidumbre, es decir, el concepto de que no se puede conocer a la vez la velocidad y la posición exactas de un electrón; ni se puede conocer su energía exacta, medida en un intervalo de tiempo dado.
En el nivel cuántico se violan todas las leyes básicas del sentido común: los electrones pueden desaparecer y reaparecer en otro lugar, y los electrones pueden estar en muchos lugares al mismo tiempo. (Resulta irónico que Einstein, el abuelo de la teoría cuántica que ayudó a iniciar la revolución en 1905, y Schródinger, que nos dio la ecuación de ondas, estuvieran horrorizados por la introducción del azar en la física fundamental. Einstein escribió: «La mecánica cuántica merece mucho respeto. Pero una voz interior me dice que esto no es toda la verdad. La teoría ofrece mucho, pero apenas nos acerca más al secreto del viejo. Por mi parte, al menos, estoy convencido de que Él no juega a los dados»).
La teoría de Heisenberg era revolucionaria y controvertida, pero funcionaba. De un golpe, los físicos podían explicar un gran número de fenómenos intrigantes, incluidas las leyes de la química. ¿Qué probabilidad hay de que nuestros átomos se disuelvan repentinamente y reaparezcan al otro lado de una pared de ladrillo? Semejante suceso de teletransporte es imposible según la física newtoniana, pero está permitido según la mecánica cuántica. La respuesta, no obstante, es que habría que esperar un tiempo mucho mayor que la vida del universo para que esto ocurriera. (Si utilizáramos un ordenador para representar gráficamente la onda de Schródinger de nuestro propio cuerpo, encontraríamos que refleja muy bien todos los rasgos del cuerpo, excepto que la gráfica sería un poco borrosa, con algunas de las ondas rezumando en todas direcciones. Algunas de las ondas se extenderían incluso hasta las estrellas lejanas. Por ello hay una probabilidad muy minúscula de que un día nos despertemos en un planeta lejano).
El hecho de que los electrones puedan estar aparentemente en muchos lugares al mismo tiempo forma la base misma de la química. Sabemos que los electrones circulan alrededor del núcleo de un átomo, como un sistema solar en miniatura. Pero átomos y sistemas solares son muy diferentes. Si dos sistemas solares colisionan en el espacio exterior, los sistemas solares se romperán y los planetas saldrán disparados al espacio profundo. Pero cuando los átomos colisionan, suelen formar moléculas que son perfectamente estables y comparten electrones. En las clases de química de bachillerato el profesor suele representar esto con un «electrón difuminado», que se parece a un balón de rugby que conecta los dos átomos.
Pero lo que los profesores de química raramente dicen a sus alumnos es que el electrón no está difuminado» entre dos átomos. Este «balón de rugby» representa la probabilidad de que el electrón esté en muchos lugares al mismo tiempo dentro del balón. En otras palabras, toda la química, que explica las moléculas del interior de nuestros cuerpos, se basa en la idea de que los electrones pueden estar en muchos lugares al mismo tiempo, y es este compartir electrones entre dos átomos lo que mantiene unidas las moléculas de nuestro cuerpo. Sin la teoría cuántica, nuestras moléculas y átomos se disolverían instantáneamente.
En realidad, los «saltos» cuánticos tan comunes dentro del átomo no pueden generalizarse fácilmente a objetos grandes tales como personas, que contienen billones de billones de átomos. Incluso si los electrones de nuestro cuerpo están danzando y saltando en su viaje fantástico alrededor del núcleo, hay tantos de ellos que sus movimientos se promedian. A grandes rasgos, esta es la razón de que en nuestro nivel las sustancias parezcan sólidas y permanentes.
Por consiguiente, aunque el teletransporte está permitido en el nivel atómico, habría que esperar un tiempo mayor que la edad del universo para presenciar realmente estos extraños efectos en una escala macroscópica. Pero ¿podemos utilizar las leyes de la teoría cuántica para crear una máquina para teletransportar algo a voluntad, como en las historias de ciencia ficción? Sorprendentemente, la respuesta es un sí matizado.
(Continúa en la siguiente entrada)
No hay comentarios:
Publicar un comentario